Technical Datasheet

LFM 10
Micro Flow Meter
Application ... 3
Design and Principle ... 3
Technical Data ... 4
Dimensional Drawings .. 5
Pressure Drop .. 6
Geneeral Operation Instructions 7
Application

The LFM is a flow meter for all kinds of low-viscosity fluids in batching and filling applications. It facilitates the measurement of extremely low flow rates from 0.005 ltr./min upwards.

The heart of the internal construction is a double ringpiston. Thanks to the low mass of the piston and minimum frictional loss, the LFM will respond even to extremely low flow volumes. In addition, the piston principle minimizes leakage and guarantees for a good linearity and repeatability.

The LFM 10 is compact and has a low weight of only 650g incl. pickup. Nevertheless, it is made from stainless steel like all KEM flow meters. A filter is supplied with each LFM.

Design and Principle

Positions 1 and 5 show the measuring chambers 1 and 2 completely filled with the measuring medium. Both volumes are displaced by the pistons in each full cycle as described below:

Position 1: The nutator is in its farthest right travel point. The beam is connected with the nutator and will therefore move with the nutator. The upstream pressure acts on the upper surface of the nutator. The beam is offset to the right, therefore the medium will force the right-hand piston downwards in a clockwise direction. At the same time, the left-hand piston moves upwards in a counter-clockwise direction. This movement is caused by the resultant force of the medium on the nutator. Position 1 shows measuring chamber 1 open. Thus a larger part of the surface is exposed to the medium on the right-hand side. The resultant forces accelerate the nutator as shown in position 2.

In position 3 the upstream pressure affects the right-hand surface of the right-hand piston and the upper right-hand surface of the left-hand piston. The nutator and beam are forced along as shown in position 4 and 5. This is because the right-hand piston has more of its surface exposed to the medium. Positions 5 and 6 depict the movements and forces on the nutator in exactly the opposite directions of those in positions 1 to 4.

This cycle repeats itself in proportion with a continuous flow at rates of approx. 5 to 300 times per second. A volume of approx. 0.01 cm³ is displaced in each cycle.

The integral carrier-frequency pickup type VTE-CM-S detects the oscillating movement of the nutator and beam through the body of the meter and will supply a digital output signal with a frequency which is proportional to the flow volume.
Technical Data

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>0.005 up to 0.25 ltr./min</td>
</tr>
<tr>
<td>Linearity</td>
<td>± 2.5% of actual flow</td>
</tr>
<tr>
<td>Repeatability</td>
<td>± 0.1%</td>
</tr>
<tr>
<td>Viscosity range</td>
<td>0.6 up to 6 mm²/s</td>
</tr>
<tr>
<td>K-factor</td>
<td>approx 75,000 pulses/ltr.</td>
</tr>
<tr>
<td>Frequency range</td>
<td>5 up to 312 Hz</td>
</tr>
<tr>
<td>Connections</td>
<td>2 off G ¼” / G½” / ½”NPT</td>
</tr>
<tr>
<td>Temperature</td>
<td>up to +70 °C</td>
</tr>
<tr>
<td>Pressure</td>
<td>100 bar</td>
</tr>
<tr>
<td>Weight incl. pickup</td>
<td>650 g</td>
</tr>
<tr>
<td>Materials</td>
<td>housing: stainless steel 1.4435 (SS316L)</td>
</tr>
<tr>
<td></td>
<td>Housing: stainless steel 1.4122 (SS303)</td>
</tr>
<tr>
<td></td>
<td>sealing: FKM, PTFE, FFKM (Isolast)</td>
</tr>
</tbody>
</table>

Electrical Connection

<table>
<thead>
<tr>
<th>VTE-CM-S Verstärker</th>
<th>VTE-CM-S Verstärker</th>
</tr>
</thead>
<tbody>
<tr>
<td>supply voltage</td>
<td>9 bis 29 V/DC</td>
</tr>
<tr>
<td>Quiescent current</td>
<td>(I_R < 4 \text{ mA})</td>
</tr>
<tr>
<td>Output signal</td>
<td>passiv NPN/OC</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{high}} = U)</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{low}} < 0.6 \text{ V} + (I_{\text{out}} \text{ mA}) \times 1.3 \text{ kΩ})</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{max}} = 30 \text{ V})</td>
</tr>
<tr>
<td>Pin connection</td>
<td>1 = +UB</td>
</tr>
<tr>
<td></td>
<td>2 = 0V</td>
</tr>
<tr>
<td></td>
<td>3 = n.c.</td>
</tr>
<tr>
<td></td>
<td>4 = OC signal (collector)</td>
</tr>
<tr>
<td></td>
<td>5 = OC signal (emitter)</td>
</tr>
</tbody>
</table>
Dimensional Drawings (mm)

LFM 10 F-pickup

![Diag1](image1.jpg)

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFM 10 CT</td>
<td>65.5</td>
<td>G⅛”</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>LFM 10 01</td>
<td>72.5</td>
<td>G⅛”</td>
<td>12.5</td>
<td>35</td>
</tr>
<tr>
<td>LFM 10 03</td>
<td>65.5</td>
<td>G⅛”</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>LFM 10 04</td>
<td>65.5</td>
<td>¼” NPT</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>LFM 10 SC</td>
<td>65.5</td>
<td>G⅛”</td>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>

LFM 10 04 E-pickup

![Diag2](image2.jpg)
Pressure Drop at 1 cSt with installed filter

Flow rate in cm³/min

Pressure Drop graph

Flow rate in cm³/min

Flow rate in cm³/min
General Operation Instructions

Mounting position of the LFM
vertical with outlet up

Filter
40 μ required
filter for pipe connection AØ 6 mm

Ordering Information

LFM 10 ** **

V = Viton seal
T = Teflon seal
I = Isolast
F = plug-in pickup type VTE-CM-S
E = screw-in pickup, e.g. VTM local display
03 = stainless steel as per DIN 1.4435 (body)
and 1.4122 (internal parts)
Contact worldwide

KEM-Headquarter
Liebigstraße 2
D-85757 Karlsfeld
T. +49 8131 5 93 91 - 0
F: +49 8131 9 26 04
info@kem-kueppers.com

KEM-Office West
Im Langen Hahn 44
D-58515 Lüdenscheid
T. +49 2351 9 78 80
F: +49 2351 9 78 83 1
kem-west@kem-kueppers.com

KEM-Office South
Dahlienweg 35
D-73765 Neuausen
T. +49 7158 9 56 82
F: +49 7158 9 56 83
kem-sued@kem-kueppers.com

Denmark
E. Eberhardt ApS
Byggestuben 6
DK-2950 Vedbaek
T. +45/45/89 33 66
info@eberhardt.dk

China
KEM China
Mr. Xiao Tianxiang
Rm. 2429, JinYuan Office Building, No. 36,
CN- BeiYuan Road, Beijing 100012
T. +86/10/52 00 37 38
Shaw@kem-kueppers.com

Norway
Flow Teknikk as
Olav Brunborgsv. 27, Postboks 244
N-1377 Billingstad
T. +47/66/77 54 00
mail@flow.no

Poland
Newtech Engineering
ul. Sowinskiego 3
PL-4-100 Gliwice
T. +48/32/237 61 98
newtech@newtech.com.pl

Finland
Wexon Oy
Juhanantie 4
FI-01740 Vantaa
T. +358/9/29 04 40
wexon@wexon.com

Portugal
Continetra Departamento Industria
R. Braamcamp 88-40 D10
P-1269-020 Lisboa
T. +351/213/86 05 00
continetra@continetra.com

United Kingdom & Eire
KEM Küppers UK
2 Highfield Drive
Ickenham Uxbridge
UB10 8AL England
T. +44/1895/23 35 52
hans.rader@kem-kueppers.co.uk

Russia
Michael Dueck
Industrievertragen und Vertrieb
St.-Vithrer-Str. 12
D-50171 Kerpen
T. +49/2237/67 91 88
info@m-dueck.de

Hong Kong Area
Asia Technology and Instrument Ltd.
Unit 5, 9/F., Free Trade Centre
49 Tsun Yip Street, Kwun Tong
HK-Kowloon
T. +85/22716 55 56
ati@ati.com.hk

Sweden
Pentronic AB
SE-690 93 Gunnebohuk
T. +46/490/25 85 00
info@pentronic.se

Italy
Ingg. Vigo e Cova SAS
Piazzale Segrino 6/a
I-20159 Milan
T. +39/02/668 82 02
vigo.cova@vigocova.com

www.kem-kueppers.com
info@kem-kueppers.com

KEM Küppers Elektromechanik GmbH | Liebigstraße 2 | D-85757 Karlsfeld | tel +49 8131 5 93 91 - 0 | fax +49 8131 9 26 04

Copyright KEM, Subject to change without notice, ES Rev. 002- 04/03/10