Warnings and Cautions for MQV series Flow Controllers (For installation and use of this device, refer to the warnings and cautions in the user's manual.)

• Never allow gases that are within explosive limits to pass through this device. Doing so might result in an explosion accidents.

• Never use a device for oxygen gas if it is not a special oil-free oxygen gas model. Doing so could cause the gas to ignite. Even if gas-contacting sections have been treated to be oil-free,

they cannot be used for oxygen if they have previously been used for some other gas • If the device is used for burner air-fuel ratio control, take the

necessary countermeasures with the equipment to prevent the occurrence of backfire and to avoid any influence to the device even if backfire occurs. Pressure increase or fire in the pipes caused by the backfire of the burner could damage the controller.

Prevent foreign matter from entering the device. If rust, water droplet, oil mist, or dust in the pipes enters the device, measurement or control error or damage might occur.

If there is a possibility of foreign matter entering the device, provide a filter, strainer or mist trap capable of eliminating foreign matter 0.1 μm or greater in diameter at the upstream. Be sure to inspect and replace the filter at regular intervals.

• Use the device within the operating differential pressure range. Also, do not subject it to pressure beyond the rated pressure resistance range. Doing so might damage it.

Do not subject this device to pressure beyond its rated pressure resistance. Doing so might result in damage.

Be sure to use within the flow rate range stated in the product specifications. To prevent excessive flow rate, design instrumentation that includes, as appropriate, supply pressure management, a throttle valve, etc. Exceeding the upper limit of the range may result in display and output values that are considerably lower than the actual flow rate

lf a problem with this device could result in damage, include appropriate redundancy in the system design.

The value on this device cannot completely shut a flow off. If complete shutoff is required, provide a shutoff valve separately. When the external valve is closed, it is necessary also to fully close the valve of the device using either of the following methods:

Set the flow rate setpoint to zero.

Make the valve operation mode to fully closed

If this valve remains in normal control status when the external shutoff valve is closed (zero flow rate), there will be an excessively large flow as soon as the external shutoff valve is opened. For the MQV0050(J/K), MQV0200(J/K), and MQV0500(J/K), if the external shutoff valve is closed continuously for 5 minutes or more in control mode or with the valve forced fully open, the valve overheating limit (AL71) will be activated and the current to the valve will be forcibly limited.

 Before connecting pipes with Swagelok or VCR connections, check the precautions in the instruction provided by the connecting joint manufacturer. When separately purchasing a connecting joint, use the following made by Swagelok Co., Ltd:

1/4" Swagelok: SS-400-1-6ST (standard) SS-400-1-6STSC11 (oil-inhibited)

1/2" Swagelok: SS-810-1-8ST (standard) SS-810-1-8STSC11 (oil-inhibited)

1/4" VCR: SS-4-VCR-1-00032SC11

3/8" VCR: SS-8-VCR-1-8STSC11 or equivalent

Observe the following when using the device (oil-free model) for

oxvgen gas:

- · Piping should be carried out by a specialist skilled in handling oxygen gas.
- Use oil-free pipes and parts

· Be sure to remove foreign matter, burrs, etc. from the pipes before connecting the device.

Install a filter upstream of the device.

Mount securely in order to prevent vibration. Otherwise, equipment failure could result.

• Mount the device horizontally. Do not mount it with the display facing down. Doing so might cause measurement error or equipment failure.

• For the MQV0050(J,K)/0200(J,K)/0500(J,K)/1000(J,K), to keep pressure loss in the piping as low as possible, use as large a diameter pipe as possible. If the pressure loss in the piping is high, the gas supply pressure to this device (operating differential pressure) may fluctuate greatly, resulting in unstable control.

• When using a relay for external contact input and/or external 3-way switching input always use a relay designed for micro-current use (with gold contacts). Failure to do so could cause faulty contact, resulting in malfunction.

lf there is a risk of a power surge caused by lightning, use Azbil Corporation's SurgeNon to prevent possible fire or equipment failure. • Gas type switching by external contact input, flow rate switching, and analog input/output voltage range switching by external 3-way input switching should be done only after setting the operation mode to fully closed. Switching while controlling could cause large fluctuations

• Do not use a semi-standard gas model with gases other than those below. Doing so may degrade the O-ring seal.

Compatible gases: Nitrogen (N2), air, argon (Ar), carbon dioxide (CO₂), ammonia (NH₃), and acetylene (C₂H₂).

If a semi-standard gas model is used for a gas with an ammonia component, be sure the gas is dry, with a dew point of -20°C or less. Otherwise the sensor may be damaged

Please read the "Terms and Conditions" from the following URL before ordering or use

http://www.azbil.com/products/bi/order.html

Other product names, model numbers and company names may be trademarks of the respective company.

Azbil Corporation

Advanced Automation Company

Yamatake Corporation changed its name to Azbil Corporation on April 1, 2012.

1-12-2 Kawana, Fujisawa Kanagawa 251-8522 Japan URL: http://www.azbil.com

1st Edition : Issued in Mar 2006-ST 7th Edition : Issued in Nov. 2014-SK/AZ

(11)

[Notice] Specifications are subject to change without notice. No part of this publication may be reproduced or duplicated without the prior written permission of Azbil Corporation.

CP-PC-1453E

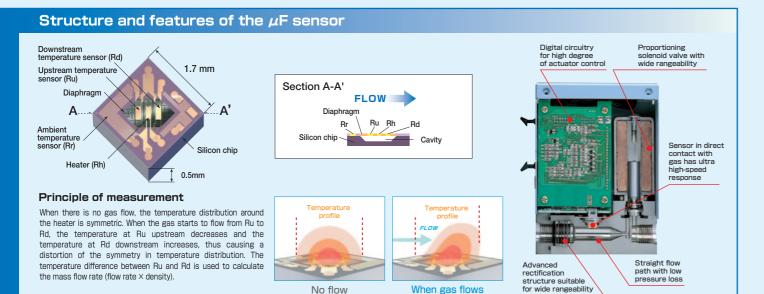
azbil

Digital Mass Flow Controller

New advances in finely honed control capability! Superior high-speed control (300ms) with an enhanced variety of functions.

0

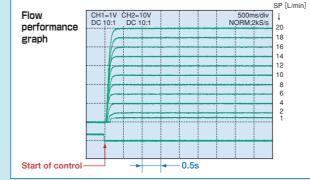
CE


The Ultra Fast μ F Sensor, Combined with **Advanced Actuator Control Technology**

300ms* high-speed control can be used for low differential pressure work. Selectable control range, power circuit isolation(an industry first), and emphasis on usability

(* 500ms for the MQV9005/9200/9050B and C, 700ms for the MQV0050/0200/0500/1000J and K)

The MQV series features high performance digital gas mass flow controllers that incorporate the ultra small μ F (Micro Flow[®]) sensor developed by Azbil Corporation, a pioneer in MEMS (micro electromechanical systems) flow sensors. The **MQV** series uses μ F sensor output and advanced PID control technology to drive a proportional actuator. Very low flow rate models of 5, 20, and 50 mL/min have been added to the lineup, expanding the available application ranges.



Advanced 300ms Advantage high-speed controllability

Achieves 300ms high-speed control (700ms for the MQV0050/0200/0500/1000J and K). The MQV series offers exceptionally fast response from no flow to the stable setpoint flow rate, and after setpoint changes. This high-speed response to changes in primary gas pressure can minimize the effects on secondary flow.

3 Broad lineup of models Advantage

The lineup includes models with or without integrated display, and models for standard gas, for hydrogen/helium, and for special gases. Select the optimum model for your application needs.

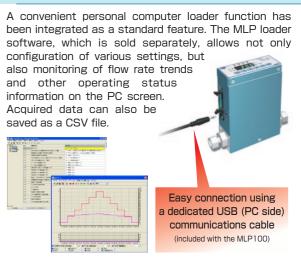
Wide range of standard functions 5 Advantage

The MQV series comes with a multitude of standard functions such as flow rate indication and totalizing. Without the need to process software like a PLC, the MQV series handles a wide range of applications with ease.

Maior functions

- Flow rate indication
- OK flow rate indication/output
 Indication of amperage to valve
 Flow rate unit and decimal point location change
 Up to 8 preset setpoints
- Valve forced open/closed Automatic valve shut-off Gas type changeover
- Gas type selection (freely change gas conversion factor)
 Selectable control range
- SP ramp setting Slow start option Control dead zone setting
- External switch input (for SP change, gas type changeover and range changeover) Event output (abnormal flow rate, operation mode)

Six easy-to-operate buttons, superior indication function, and SP change even in control run mode.


refer to page 3. % SP refers to deviation

from the setpoint

Operation at low differential 4 pressure is a standard feature The MQV series does not use capillaries that have large pressure loss. So The **MQV series** can control in the low pressure difference. Optimum for low pressure gas control application Ex Brazing production of fluorescent lamps etc.

Structure of conventional massflow products Structure of Micro Flow products

PC loader 0 communications functions Adventage

Sample applications

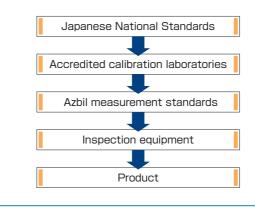
Engineered for flexible installation 9 Advantage

On models with an integrated display, the display direction can be changed 180 degrees.

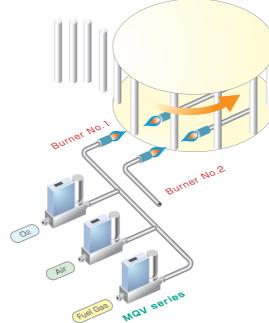
Can be connected to a regular 24Vdc power supply Advantage 8

The internal power supply circuit of this device is isolated from its analog circuits. When multiple $\ensuremath{\mathsf{MQVs}}$ are controlled by PLC analog input/output, even if the analog module of the PLC is not isolated between channels, a common power supply can be used. Even without individual power supplies, there is no negative effect from surrounding circuits. An AC adapter (100 to 240Vac) is also available by separate purchase.

Adventage 10 Wide temperature range


As a product developed for general industrial markets, the MQV series can be used from -10 to +60°C (ambient temperature and gas temperature).

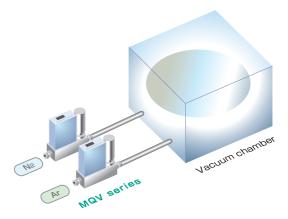
Advantage]] CE marking The MQV series is CE-compliant.


Advantage 12 JCSS traceability

The MQV series offers Japan Calibration Service System (JCSS) traceability, based on Japanese National Standards and Japanese measurement law, and in conjunction with Advanced Industrial Science and Technology (AISS).

Air/fuel ratio control for burner

 Manufacturing of backlights Halogen lamps Glass-forming Brazing



Various test equipment

·Evaluation equipment ·Gas analyzers Incubators

Gas flow rate control for vacuum

- Sputtering
- · Plasma cleaning

Control of furnace internal atmosphere

- ·Baking furnaces for electronics parts
- ·Gas carburizing furnaces
- ·Baking and annealing furnaces

Specifications

Standard gas model / Small-Flow Type

Stanuaru ga	s model / Small-F	now type									
Model No.		MQV9005	MQV9020	MQV9200	MQV9500	MQV0002	MQV0005	MQV0020	MQV0050 (B,C)	MQV0100	
Valve type						Proportiona	al solenoid v	/alve			
Valve operation	on							gized (N.C.)		1	
Standard full- flow rate [Note		5mL/min (standard)	20mL/min (standard)	200mL/min (standard)	0.500L/min (standard)	2.00L/min (standard)			50.0L/min (standard)	100L/min (standard)	
Gas types		oxygen (O2)	gen (N2),), argon (Ar).	c meth	ity gas 13A (nane 100% (LNG: 45MJ/r CH4), propane	n ³), city gas 100% (СзН	, carbon dioxid 13A (LNG: 461 8), butane 100	VIJ/m ³), 1% (C4H10).	Air/nitrogen (N2), oxygen (O2), argon (Ar), carbon dioxide (CO2)	
					sive compone				e clean, without dust	or oil mist. [Note 3]	
Control	Response(at std.		2% FS (typ.)					2% FS (typ.)			
	differential pressure)	(When co	ntrol is star	ted from ful	lly closed c	ondition, and	d when the	setpoint is c	hanged while con	trol is performed.)	
	Accuracy [Note 4] (at standard temperature and	±19	6 FS	St	andard mod			≦Q≤50% FS Ω≤100% FS		Std. model: ±1% FS (0% FS <q≤80% fs)<="" td=""></q≤80%>	
	differential pressure; Q is flow rate)	High accuracy model: ±0,2% FS (0% FS≤Q<20% FS)								±2% FS (80% FS <q≤100% fs)<="" td=""></q≤100%>	
Pressure	Required differential pressure [Note 6]	5kPa	30kPa	50kPa	5kPa	50kPa	5kPa	50kPa	100kPa	250kPa	
	Operating differential pressure range		300kPa max. 400kPa max.								
	Max. inlet pressure	0.5MPa (gauge) [Note 7]									
Temp.	Operating temp.						to +60℃				
Humidity	Operating humidity							ion allowed)			
Analog output	Output range			0-5	Vdc / 1-5	/dc / 0-20r	mAdc / 4-2	20mAdc (sele	ectable)		
Alarm/event output	Number of outputs					Alarm:	1. Event: 2				
External switching input	Input type, number of inputs					ernal 3-way contact inp		nputs: 1. switching): 3	3.		
Communications	System	(1) Dedicate	ed PC loade					ons (3-wire system	1) [Note 10]	
Power	Rating				24Vdc,	current cor	sumption (300mA max			
	Isolation				Power circu	uit is isolate	d from inpu	t/output circ	uit.		
Matl. of gas-co	ntacting parts	SUS316, Teflo borosilicate g				S	SUS316, Te	eflon, fluororu	bber		
Connection m	nethod	1/4" Swl,	1/4" VCR		Rc 1/4	4", 1/4" Swl	, 1/4" VCR,	9/16-18 UI	NF	9/16-18 UNF, Rc 1/4", 3/8" Swl, 3/8" VCR	
Mounting orie	entation			Horiz	ontal. Note	that the di	splay panel	must not fa	ce down.		
Weight		Approx. 1.1kg Approx. 1.2kg									
Certifications						CE	marking				

Standard gas model / Medium-Flow Type

	-riow Type								
	MQV0050 (J,K)	MQV0200	MQV0500						
		Proportional solenoid valve							
า									
cale 1	50.0L/min (standard)	200L/min (standard)	500L/min (standard)						
	city gas methane 10	13A (LNG: 45MJ/m ³), city gas 13A (LNG: 46 10% (CH4), propane 100% (C3H8), butane 100	MJ/m ³), D% (C4H10).						
Response(at std.									
lifferential pressure)	(When control is started from fully closed condition, and when the setpoint is changed while control is performed.)								
ACCUTACY [Note 4] at standard emperature and	· · ·)						
lifferential pressure; Q is low rate)	(None)		FS (0% FS≤Q<25% FS) SP (25% FS≤Q<80% FS) [Note 5] SP (80% FS≤Q≤100% FS)						
Required differential pressure [Note 6]	10kPa	100kPa	150kPa						
Dperating lifferential pressure range	100kPa max.	300kPa max. (−10℃≤T≤40℃) 180kPa max. (40℃ <t≤60℃)< td=""><td>300kPa max. (−10℃≤T≤35℃) 240kPa max. (35℃<t≤50℃)< td=""></t≤50℃)<></td></t≤60℃)<>	300kPa max. (−10℃≤T≤35℃) 240kPa max. (35℃ <t≤50℃)< td=""></t≤50℃)<>						
	(Condition: power supply voltage = 24.0V) [Note 8]								
		(c c ,							
Operating temp.			−10 to +50℃						
	0-5Vdc /	1-5Vdc / 0-20mAdc / 4-20mAdc (set)	electable)						
lumber of outputs		Alarm: 1. Event: 2.							
nput type, number of inputs	Ext	External 3-way switching inputs: 1. ternal contact inputs (2-way switching):	3.						
System	(1) Dedicated PC loader con	nection [Note 9] (2) RS-485 communicat	tions (3-wire system) [Note 10]						
Rating			24Vdc, current consumption 500mA max.						
solation	Power circuit is isolated from input/output circuit.								
acting parts	Standard gas model to SUS316, Teflon, fluororubber								
thod	Rc 1/2", 1/2" Swl, 3/8" VCR, 3/4-16 UNF								
tation	Horizontal. Note that the display panel must not face down.								
	Approx. 3.5kg								
		CE marking							
	esponse (at std. ifferential pressure) cCUracy (Note 4) at standard emperature and ifferential ressure; Q is ow rate) lequired differential ressure index ifferential ressure range leasure r	MQV0050 (J,K) ale 50.0L/min (standard) ale 50.0L/min (standard) ale 50.0L/min (standard) ale 50.0L/min (standard) ale 50.0L/min (standard) at standard Air/nitrog city gas methane 10 The gas must be dry, without corrosive or courtery (Note 4) at standard at standard (When control is started from fully clo courtery (Note 4) at standard at standard Sta at standard 10kPa ergesure; Q is ow rate) 10kPa lequired differential ressure range 100kPa max. at stinlet pressure 0-5Vdc / max. lat, inlet pressure 0-5Vdc / max. perating humidity 1 putper of outputs 1 nput type, umber of inputs Ext 24Vdc, curren 400m solation Powe acting parts	MQV0050 (J,K) MQV0200 Proportional solenoid valve Normally closed when de-energized (N.C. 200L/min (standard) ale 50.0L/min (standard) Air/nitrogen (Ne), oxygen (Oe), argon (Ar), carbon dioxid city gas 13A (LNC: 45MJ/m ³), city gas 13A (LNC: 45MJ/m ³						

Model No.		MQV9200	MQV9500	MQV0002	MQVOOD
Valve type					
Valve operatio	n				Norr
Standard full-s flow rate [Note		200mL/min (standard)	0.500L/min (standard)	2.00L/min (standard)	5.00L/m (standar
Gas types		lt r		trogen (N2), a The gas r clean, withou	must be d
Control	Response(at std.			0.3s for S	SP ±2%
	differential pressure)	(When co	ntrol is star	ted from ful	lly closed
	Accuracy [Note 4] (at standard tempe- rature and differential pressure; Q is flow rate)			±0.5% FS ±1% FS (
	Required differential pressure [Note 6]	50kPa	5kPa	50kPa	5kPa
	Operating differential pressure range			30)0kPa m
	Max. inlet pressure				
Temp.	Operating temp.				10
	Operating humidity			0 5	10 t
	Output range			0-5	Vdc / 1-
External switching	Number of outputs				F
	number of inputs				Exterr
Communications	System	(1) Dedicate	ed PC loade	r connec
Power	Rating		24Va	dc, current	consump
	Isolation				Power ci
Matl. of gas-cor					Standa
Connection m	ethod			Rc 1/4", 1	1/4" Swl,
	a de a del a se			Lloriz	ontal. N
Mounting orier Weight	ntation				prox. 1.2

Model No.		MQV9020	MQV9050	MQV
Valve type				
Valve operation	on			Nor
Standard full-s flow rate [Note		20.0mL/min (standard)	50.0mL/min (standard)	0.500 (star
Gas types		Th	e gas must be d It mu	ry and no Ist also b
Control	Response(at std.	500ms for SP	±2% FS (typ.)	
	differential pressure)	(When contr	ol is started from	h fully clo
	Accuracy (at standard temperature and differential pressure; Q is flow rate)	$\pm 1.0\%FS$ (50%FS <q<math>\le 100\%FS) $\pm 0.5\%FS$ (0%FS$\le Q \le 50\%FS$)</q<math>	±1,0%FS (0%FS≤Q≤100%FS)	
Pressure	Required differential pressure [Note 6]	Hydrogen:2.5kPa Helium:5kPa	Hydrogen:10kPa Helium:20kPa	
	Operating differential pressure range			
	Max. inlet pressure			
Temp.	Operating temp.			
Humidity	Operating humidity			10
Analog output	Output range		0-5	5Vdc / 1
Alarm/event output	Number of outputs			
External switching input	Input type, number of inputs			Exter
Communications	System	(1) Dedic	ated PC loader c	onnectio
Power	Rating			24\
	Isolation			Power c
Matl. of gas-cor	ntacting parts		on, fluororubber, glass, silicon	
Connection m		1/4" Swl,	1/4" VCR	
Mounting orie	ntation			rizontal.
Weight		Approx	.1.1kg	
Certifications				

■ Notes for pages 05-06 INote 11 Lmin (standard) indicates the volumetric flow rate (L/min) converted to 20°C, one atmosphere (1 atm). The reference temperature can be changed to 0°C, 25°C, or 35°C. The controllable flow rate range varies according to the gas type. See Table 1. [Note 2] When used with ammonia, or acetylene, select a Semi-standard gas model (with EPDM seal). For ammonia, be sure to use under dry conditions with a dewpoint of -20°C or less. In addition, do not use a Semi-standard gas model with gases other than the above gases. Doing so may degrade the 0-ring sealing characteristics. The Semi-standard gas model is set for air/nitrogen use before model, set the gas type conversion factor (C.F.). [Note 3] Prevent foreign matter from entering the device. If rust, water droplets, oil mist, or dust in the piping enters the device, measurement error or damage to the device might result. If there is a possibility of foreign matter entering the device, provide an upstream filter, strainer or mist trap capable of eliminating foreign matter 0.1µm or greater in diameter, and be sure to periodically inspect and replace the filter. [Note 4] Accuracy information applies to air/nitrogen or oxygen (oxygen gas model). [Note 5] ±xx% SP indicates how accurately the controlled pressure = 0kPa (gauge). Operation is possible even below the required differential pressure required to control the full-scale flow rate. (Forditions: outle pressure = 0kPa (gauge).] Operation is possible even below the required differential pressure end flow rate when the valve is fully open, refer to the user's manual, CP-SP-1204E (standard gas model). [Note 7] For use at inlet pressures higher than 0.5 MPa (gauge), contact Azbil Corporation. [Note 8] Maximum operating differential varies according to power supply voltage. [Note 9] A dedicated PC loader package (sold separately) is required. [Note 10] Applies only to models with the optional RS-485 communications function.

005	MQV0020		MQV0200	MQV0500						
		al solenoid valve								
		hen de-energized (N.								
'min ard)	20.0L/min (standard)	50.0L/min (standard)	200L/min (standard)	500L/min (standard)						
r), carbon dioxide (CO ₂), acetylene (C ₂ H ₂), ammonia (NH ₃) [Note 2] dry, without corrosive components (chlorine, sulfur, acid). r oil mist. The dew point of the ammonia gas must be -20° or below. [Note 3]										
% FS (typ.) 0.7s for SP ±2% FS (typ.)										
		d when the setpoint								
	Q≤50% FS) Q≤100% FS		±0.5% FS (0% FS ±1% FS (40% FS ±1.5% FS (80% F	<q≤80% fs)<="" td=""></q≤80%>						
а	50kPa	100kPa	100kPa	150kPa						
nax.			300kPa max. (−10°C≤T≤40°C) 180kPa max. (40°C <t≤60°c) (Condition: power supply)</t≤60°c) 	300kPa max. (−10℃≤T≤35℃) 240kPa max. (35℃ <t≤50℃) roltage = 24.0V)[Note B]</t≤50℃) 						
	0.5MPa (gauge) [Note 7]								
		to +60°C		−10 to +50℃						
		condensation allow								
-5\		mAdc / 4-20mAdc (selectable)							
		1. Event: 2.								
rnal	contact inp	switching inputs: 1. uts (2-way switching								
ectio	N [Note 9] (2) RS-485 communic	ations (3-wire system	m) [Note 10]						
nptic	on 300mA	max.	24Vdc, current consumption 400mA max.	24Vdc, current consumption 500mA max.						
		d from input/output								
ard gas model to SUS316, Teflon, EPDM										
,	I, 1/4" VCR 1/2" Swl,									
	lote that the display panel must not face down.									
.2kg										
	CE	marking								

V9500	MQV0005	MQV0010	MQV0050	MQV0200								
	ortional solenoid											
	sed when de-ene	- ()										
00L/min andard)	5.00L/min (standard)	10.00L/min (standard)	50.0L/min (standard)	200L/min (standard)								
Hydrogen (H ₂), helium (He). not contain corrosive components(chlorine, sulfur, acid). be clean, without dust or oil mist. [Note 3]												
0.3s for SP ±2% FS (typ.)												
losed condition, and when setting is changed while control is performed.)												
	±0.5% FS(0% FS≤Q≤40% FS) ±1.0% FS(40% FS <q≤80% fs)<br="">±2.0% FS(80% FS<q≤100% fs)<="" td=""></q≤100%></q≤80%>											
	Hydrogen : 20kPaHydrogen:80kPaHydrogen:20kPaHydrogen:100kPaHelium : 40kPaHelium:150kPaHelium:40kPaHelium:180kPa											
	300kPa max. (−10℃≤T≤60℃)											
0.5	MPa (gauge) [Not	e 7]										
	-10 to +60℃											
	RH (no condensa											
		20mAdc (selecta	ble)									
External 3	larm: 1. Event: 2 3-way switching i act inputs (2-way	nputs: 1.										
iON [Note 9]	(2) RS-485 con	nmunications (3-	wire system) [Note	101								
	nt consumption											
circuit is is	ircuit is isolated from input / output circuit.											
	SUS316, Teflon, fluororubber											
	Rc 1/4", 1/4" Swl, 1/4" VCR, 9/16-18 UNF											
al. Note that	Note that display panel must not face down.											
	05 11	Approx. 1.2kg										
	CE marking											

Specifications

Table 1.

Standard gas model Control flow rate range and setting/display resolutions (factory settings) (Units: mL/min (standard) for 9005,9020,9200, L/min (standard) for other models)

		MQV	9005	MQV	9020	MQV	9200	MQV	9500	MQV	0002	MQV	0005
		Control flow rate range	Setting/display resolution [Note 2]										
G	Air, nitrogen	0.10 to 5.00	0.02	0.2 to 20.0	0.1	2 to 200	1	0.004 to 0.500	0.002	0.02 to 2.00	0.01	0.04 to 5.00	0.02
Gas	Oxygen	0.10 to 5.00	0.02	0.2 to 20.0	0.1	2 to 200	1	0.004 to 0.500	0.002	0.02 to 2.00	0.01	0.04 to 5.00	0.02
type	Argon	0.10 to 5.00	0.02	0.2 to 20.0	0.1	2 to 200	1	0.004 to 0.500	0.002	0.02 to 2.00	0.01	0.04 to 5.00	0.02
e	Carbon dioxide	—	-	-	-	1.0 to 120.0	0.5	0.003 to 0.300	0.001	0.010 to 1.200	0.005	0.03 to 3.00	0.01
	City gas 13A (LNG: 45MJ/m ³)	-	-	-	-	2 to 200	1	0.004 to 0.500	0.002	0.02 to 2.00	0.01	0.04 to 5.00	0.02
	City gas 13A (LNG: 46MJ/m ³)	-	-	-	-	2 to 200	1	0.004 to 0.500	0.002	0.02 to 1.60	0.01	0.04 to 5.00	0.02
	Methane 100%	-	-	-	-	2 to 200	1	0.004 to 0.500	0.002	0.02 to 2.00	0.01	0.04 to 5.00	0.02
	Propane 100%	_	-	-	-	0.6 to 60.0	0.2	0.002 to 0.160	0.001	0.006 to 0.600	0.002	0.02 to 1.60	0.01
	Butane 100%	_	-	_	-	0.4 to 50.0	0.2	1.0 to 120.0 [Note 1]	0.5 [Note 1]	0.004 to 0.400	0.002	0.010 to 1.200	0.005

		MQV	0020	MQV005	O (B, C)	MQV	0100	MQV005	0 (J、K)	MQV	0200	MQV	0500
		Control flow rate range	Setting/display resolution [Note 2]	Control flow rate range	Setting/display resolution [Note 2]	Control flow rate range	Setting/display resolution [Note 2]						
G	Air, nitrogen	0.2 to 20.0	0.1	0.4 to 50.0	0.2	1.0 to 100.0	0.5	0.4 to 50.0	0.2	2 to 200	1	4 to 500	2
ß	Oxygen	0.2 to 20.0	0.1	0.4 to 50.0	0.2	1.0 to 100.0	0.5	0.4 to 50.0	0.2	2 to 200	1	4 to 500	2
type	Argon	0.2 to 20.0	0.1	0.4 to 50.0	0.2	1.0 to 100.0	0.5	0.4 to 50.0	0.2	2 to 200	1	4 to 500	2
ö	Carbon dioxide	0.10 to 12.00	0.05	0.3 to 30.0	0.1	1.0 to 80.0	0.5	0.3 to 30.0	0.1	1.0 to 120.0	0.5	4 to 400	2
	City gas 13A (LNG: 45MJ/m ³)	0.2 to 20.0	0.1	0.4 to 50.0	0.2	-	-	0.4 to 50.0	0.2	2 to 200	1	4 to 500	2
	City gas 13A (LNG: 46MJ/m ³)	0.2 to 20.0	0.1	0.4 to 50.0	0.2	-	-	0.4 to 50.0	0.2	2 to 200	1	4 to 400	2
	Methane 100%	0.2 to 20.0	0.1	0.4 to 50.0	0.2	-	-	0.4 to 50.0	0.2	2 to 200	1	4 to 500	2
	Propane 100%	0.06 to 6.00	0.02	0.2 to 16.0	0.1	-	-	0.2 to 16.0	0.1	0.6 to 60.0	0.2	2 to 200	1
	Butane 100%	0.04 to 4.00	0.02	0.10 to 10.00	0.05	-	-	0.10 to 12.00	0.05	0.4 to 40.0	0.2	2 to 160	1

Table 2. Semi-Standard Model Control flow rate range and setting/display resolutions (factory settings) (Units: mL/min (standard) for 9200, L/min (standard) for other models)

		MQV9200		MQV9500		MQVO	MQV0002		MQV0005		020	MQVOO5	50 (B, C)
		Control flow rate range	Setting/display resolution [Note 2]										
Ga	Acetylene (C ₂ H ₂)	1.0~120.0	0.5	0.003~0.300	0.001	0.010~1.200	0.005	0.03~3.00	0.01	0.10~12.00	0.05	0.3~30.0	0.1
as 1	Ammonia (NH ₃)	2~160	1	0.004~0.400	0.002	0.02~1.60	0.01	0.04~4.00	0.02	0.2~16.00	0.1	0.4~40.0	0.2
type	Air, nitrogen	2~200	1	0.004~0.500	0.002	0.02~2.00	0.01	0.04~5.00	0.02	0.2~20.0	0.1	0.4~50.0	0.2
Ű	Argon	2~200	1	0.004~0.500	0.002	0.02~2.00	0.01	0.04~5.00	0.02	0.2~20.0	0.1	0.4~50.0	0.2
	Carbon dioxide	1.0~120.0	0.5	0.003~0.300	0.001	0.010~1.200	0.005	0.03~3.00	0.01	0.10~12.00	0.05	0.3~30.0	0.1

		MQV	0200	MQV0500			
		Control flow rate range	Setting/display resolution [Note 2]	Control flow rate range	Setting/display resolution [Note 2]		
Gas	Acetylene (C ₂ H ₂)	1.0~120.0	0.5	4~400	2		
as ty	Ammonia (NH3)	2~160	1	4~400	2		
ype	Air, nitrogen	2~200	1	4~500	2		
	Argon	2~200	1	4~500	2		
	Carbon dioxide	1.0~120.0	0.5	4~400	2		

Table 3.

Hydrogen gas model Control flow rate range and setting/display resolutions (factory settings) (Units: mL/min (standard) for MQV9020/9050, L/min (standard) for other models)

		MQV9020		MQV9050		MQV9500		MQV0005		MQV0010		MQV0050	
		Control flow rate range	Setting/display resolution [Note 2]	Control flow rate range	Setting/display resolution [Note 2]	Control flow rate range	Setting/display resolution [Note 2]						
Gas	Hydrogen	0.2 to 20.0	0.1	0.4 to 50.0	0.2	0.004 to 0.500	0.002	0.04 to 5.00	0.02	0.10 to 10.00	0.05	0.4 to 50.0	0.2
type	Helium	0.2 to 20.0	0.1	0.4 to 50.0	0.2	0.004 to 0.500	0.002	0.04 to 5.00	0.02	0.10 to 10.00	0.05	0.4 to 50.0	0.2

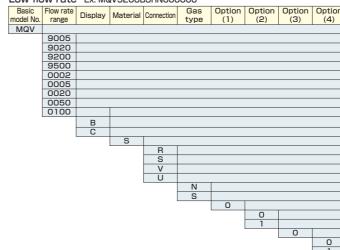
		MQV0200							
		Control flow rate range	Setting/display resolution [Note 2]						
Gas	Hydrogen	2 to 200	1						
type	Helium	2 to 200	1						

[Note 1] When the gas type of MQV9500 is set to butane 100%, the flow rate display unit is mL/min.

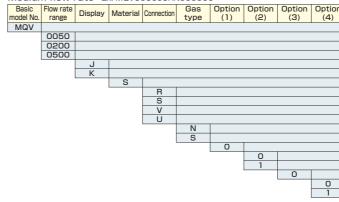
[Note 2] If an analog signal is applied to the setting input and the flow rate output, the resolution will increase greatly. Contact Azbil Corporation for more information.

Compatible gases for each model

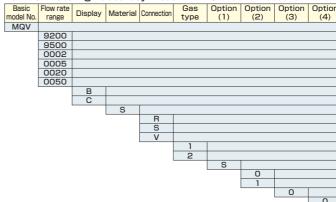
Compatible	e gases for (each model						©: recommen	ded, \bigcirc : usable			
			Gas type									
	O-ring material	Sensor	Air, Nitrogen	Oxygen	Argon	Carbon dioxide	City gas 13A	Methane 100%	Propane 100%			
Standard gas model	Fluororubber	Standard	0	O	0	0	O	0	0			
Special gas model	Ethylene-propylene	Standard	0		0	0						
Hydrogen/helium gas model	Fluororubber	Dedicated hydrogen/ helium use										

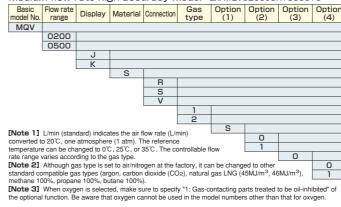

			Gas type										
	O-ring material	Sensor	Butane 100%	Ammonia	Acetylene	Ethylene, oxide gas	Hydrogen	Helium					
Standard gas model	Fluororubber	Standard	0										
Special gas model	Ethylene-propylene	Standard		0	0	0							
Hydrogen/helium gas model	Fluororubber	Dedicated hydrogen/ helium use					0	0					

Note: For use with gases other than the above, contact Azbil Corporation.


Selection guide

Standard gas model

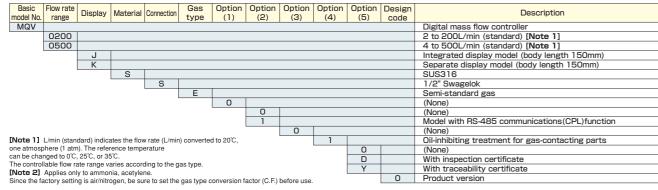



Medium flow rate Ex. MQV0050JSRN000000

Low flow rate high accuracy model Ex. MQV9200BSR1S000Y0

Medium flow rate high accuracy model Ex. MQV0200JSR1S000Y0

_			
n	Option (5)	Design code	Description
			Digital mass flow controller 0.10 to 5.00mL/min (standard) [Note 1]
			0.2 to 20.0mL/min (standard) [Note 1]
			2 to 200mL/min (standard) [Note 1]
			0.004 to 0.500L/min (standard) [Note 1] 0.02 to 2.00L/min (standard) [Note 1]
			0.04 to 5.00L/min (standard) [Note 1]
			0.2 to 20.0L/min (standard) [Note 1] 0.4 to 50.0L/min (standard) [Note 1]
			1.0~100.0L/min (standard)
			Integrated display (side-to-side dimension 90mm) Separate display (side-to-side dimension 90mm)
			SUS316, Teflon, Viton
			Rc 1/4" (except 9005, 9020) 1/4" Swagelok (In use of 0100 change to 3/8" Swagelok)
			1/4" VCR(In use of 0100 change to 3/8" VCR)
			9/16-18 UNF(except 9005, 9020)
			Air/nitrogen (changeable to standard gases) [Note 2] Oxygen [Note 3]
			(None)
			(None) RS-485 (CPL) communications
_			(None)
-			(None) Gas-contacting parts treated to be oil-inhibited
	0		(None)
	<u>D</u> Y		Inspection certificate provided
l	1	0	Traceability certificate provided Product version
n	Option	Design	Depariation
	(5)	code	Description
			Digital mass flow controller 0.4 to 50.0L/min (standard) [Note 1]
			2 to 200L/min (standard) [Note 1]
			4 to 500L/min (standard) [Note 1] Integrated display (side-to-side dimension 150mm)
			Separate display (included) (side-to-side dimension 150mm)
			SUS316, Teflon, Viton Rc 1/2"
			1/2" Swagelok
			3/8" VCR 3/4-16 UNF
			Air/nitrogen (changeable to standard gases) [Note 2]
			Oxygen [Note 3]
			(None) (None)
			RS-485 (CPL) communications
			(None) (None)
			Gas-contacting parts treated to be oil-inhibited
	0 D		(None) Inspection certificate provided
ł	Y		Traceability certificate provided
	-	0	Product version
n	Option (5)	Design code	Description
	(-)		Digital mass flow controller
			2 to 200mL/min (standard) [Note 1] 0.004 to 0.500L/min (standard) [Note 1]
			0.02 to 2.00L/min (standard) [Note 1]
			0.04 to 5.00L/min (standard) [Note 1] 0.2 to 20.0L/min (standard) [Note 1]
			0.4 to 50.0L/min (standard) [Note 1]
			Integrated display (side-to-side dimension 90mm)
			Separate display (side-to-side dimension 90mm) SUS316, Teflon, Viton
			Rc 1/4"
			1/4" Swagelok 1/4" VCR
			Air/nitrogen
			Oxygen [Note 3] High accuracy
			(None)
_			RS-485 (CPL) communications (None)
			(None)
	Y		Gas-contacting parts treated to be oil-inhibited Traceability certificate provided
l		0	Product version
n	Option	Design	Description
	(5)	code	Description Digital mass flow controller
			2 to 200L/min (standard) [Note 1]
			4 to 500L/min (standard) [Note 1]
			Integrated display (side-to-side dimension 150mm) Separate display (included) (side-to-side dimension 150mm)
			SUS316, Teflon, Viton
			Rc 1/2" 1/2" Swagelok
			3/8" VCR
			Air/nitrogen
			Oxygen [Note 3] High accuracy
			(None)
			RS-485 (CPL) communications (None)
			(None)
	Y		Gas-contacting parts treated to be oil-inhibited Traceability certificate provided
		0	Product version


Selection guide

Semi-standard gas model

Low flow rate Ex. MQV9200BSSE000100

Basic model No.	Flow rate range	Display	Material	Connection	Gas type	Option (1)	Option (2)	Option (3)	Option (4)	Option (5)	Design code	Description			
MQV								Digital mass flow controller							
	9200											2 to 200mL/min (standard) [Note 1]			
[9500											0.004 to 0.500L/min (standard) [Note 1]			
[0002									0.02 to 2.00L/min (standard) [Note 1]					
[0005									0.04 to 5.00L/min (standard) [Note 1]					
	0020								0.2 to 20.0L/min (standard) [Note 1]						
	0050								0.4 to 50.0L/min (standard) [Note 1]						
		В					Integrated display model (body length 90mm)								
		C					Separate display model (body length 90mm)								
		S					SUS316								
		R				Rc 1/4"									
				S								1/4" Swagelok			
				V								1/4" VCR			
					E							Semi-standard gas [Note 2]			
						0						(None)			
							0					(None)			
							1					Model with RS-485 communications (CPL) function			
								0				Without optional functions			
									1			Oil-inhibiting treatment for gas-contacting parts			
										0		(None)			
										D		With inspection certificate			
										Y		With traceability certificate			
											0	Product version			

Medium flow rate Ex. MQV0200JSSE000100

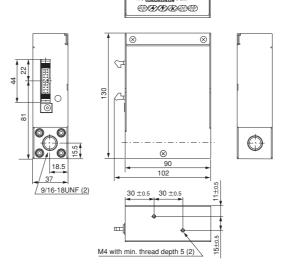
Hydrogen/helium gas model

Low flow rate Ex. MQV9500BSRH0000100

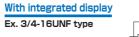
	Jwildic		10000		0100										
Basic model No.	Flow rate range	Display	Material	Connection	Gas type	Option (1)	Option (2)	Option (3)	Option (4)	Option (5)	Design code	Description			
MQV												Digital mass flow controller			
	9020	020									0.2 to 20.0mL/min (standard) [Note 1]				
	9050										0.4 to 50.0mL/min (standard) [Note 1]				
	9500									0.004 to 0.500L/min (standard) [Note 1]					
	0005											0.04 to 5.00L/min (standard) [Note 1]			
	0010										0.10 to 10.00L/min (standard) [Note 1]				
	0050									0.4 to 50.0L/min (standard) [Note 1]					
	0200										2 to 200L/min (standard) [Note 1]				
	В								Integrated display						
	C							Separate display							
S							SUS316, Teflon, Viton								
				R								Rc 1/4"			
				S								1/4" Swagelok			
				V								1/4" VCR			
				U								9/16-18 UNF			
					Н							Hydrogen/helium [Note 2]			
						0						(None)			
							0					(None)			
							1					RS-485 (CPL) communications			
								0				(None)			
									1			Gas-contacting parts treated to be oil-inhibited			
	[Note 1] L/min (standard) indicates the hydrogen flow rate								(None)						
(L/min) per minute converted to 20°C, one atmosphere (1atm).								Inspection certificate provided							
				ding to gas t						Y		Traceability certificate provided			
						t can be ch	anged to he	lium.			0	Product version			
	[Note 2] Although the gas type is set to hydrogen at the factory, it can be changed to helium.														

Table 3. Optional parts (sold separately)

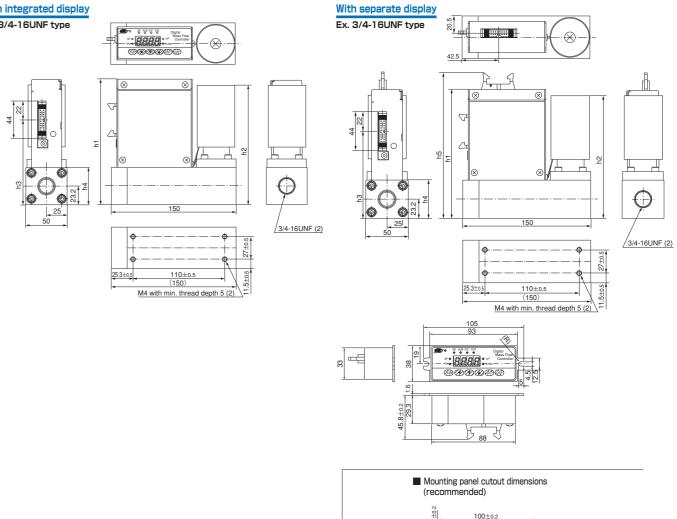
Name	Part No.	Description
Cable with dedicated connector	81446681-001	2m 20-core flat cable
Cable with dedicated connector	81446951-001	5m 20-core shielded cable
AC adapter	81446957-001	Rating: 24Vdc 750mA
Potentiometer for setting flow rate	81446683-002	Digital dial, 5kΩ, 10 turns
Front cover for separate display	81446858-001	Resin
PC loader package	MLP100A100	A dedicated software & cable


External Dimensions (Unit: m

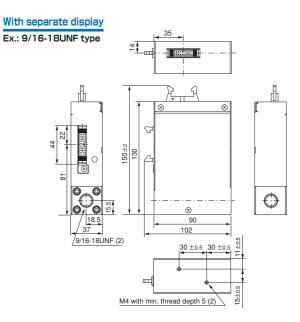
Standard gas model/semi-standard gas model: MQV9005/9020/9200/9500/0002/0005/0020/0050B,C Hydrogen/helium gas model: MQV9020/9050/9500/0005/0010/0050/0200B,C

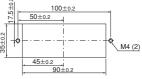

With integrated display

Ex.: 9/16-18UNF type


OK AUM EVI E Digital Mass Flow Controller щ #: 8888:L

Standard gas model/semi-standard gas model: MQV0050/0200/0500J,K





173

The "h" dimensions for the above diagrams										
	h1	h2	h3	h4	h5					
MQV0050J,K/MQV0200J,K	151	145	102	45	172					
MQV0500J,K	152	146	103	46	173					

